A Reformulation of the Radon-nikodym Theorem

نویسندگان

  • JONATHAN LEWIN
  • MIRIT LEWIN
چکیده

The Radon-Nikodym theorems of Segal and Zaanen are principally concerned with the classification of those measures p. for which any X« p. is given in the form

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A new proof for the Banach-Zarecki theorem: A light on integrability and continuity

To demonstrate more visibly the close relation between thecontinuity and integrability, a new proof for the Banach-Zareckitheorem is presented on the basis of the Radon-Nikodym theoremwhich emphasizes on measure-type properties of the Lebesgueintegral. The Banach-Zarecki theorem says that a real-valuedfunction $F$ is absolutely continuous on a finite closed intervalif and only if it is continuo...

متن کامل

LEBESQUE-RADON-NIKODYM THEOREM WITH RESPECT TO FERMIONIC p-ADIC INVARIANT MEASURE ON Zp

In this paper we derive the analogue of the Lebesque-Radon-Nikodym theorem with respect to fermionic p-adic invariant measure on Zp. 2010 Mathematics Subject Classification : 11S80, 48B22, 28B99

متن کامل

The Radon-Nikodym Theorem for Reflexive Banach Spaces El Teorema de Radon-Nikodym para Espacios de Banach Reflexivos

In this short paper we prove the equivalence between the RadonNikodym Theorem for reflexive Banach spaces and the representability of weakly compact operators with domain L(μ).

متن کامل

A Radon-Nikodym derivative for almost subadditive set functions

In classical measure theory, the Radon-Nikodym theorem states in a concise condition, namely domination, how a measure can be factorized by another (bounded) measure through a density function. Several approaches have been undertaken to see under which conditions an exact factorization can be obtained with set functions that are not σ-additive (for instance finitely additive set functions or su...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010